قضایای نقطه ثابت دوتایی در فضاهای متریک و کاربردهای آن

پایان نامه
چکیده

مفهوم نقاط ثابت دوتایی را باسکار و لکشمیکنتام در سال 2006 معرفی کردند، آن ها چند قضیه نقطه ثابت دوتایی برای نگاشت های یکنوای مخلوط در فضاهای متری جزئی به دست آوردند و این قضایا را در اثبات وجود و یکتایی جواب مسائل مرزی به کار بردند. پس از آن لکشمیکنتام و جریچ چند قضیه نقطه ثابت دوتایی و نقطه انطباق دوتایی را برای دو نگاشت f و g که دارای خاصیت g-یکنوای مخلوط است، به دست آوردند. از آن پس قضایای نقطه ثابت دوتایی بسیاری توسط دیگر مولفان به دست آمده و کاربردهایی از آن به ویژه در اثبات وجود جواب برای معادلات دیفرانسیل و انتگرال داده شده است. اخیرا امینی هرندی با روشی نو قضایای نقطه ثابت دوتاییو سه تایی را مطالعه کرده است. در این پایان نامه، نخست به بررسی وجود نقاط ثابت دوتایی نگاشت های انقباضی در فضاهای متری جزئی می پردازیم، سپس در چارچوب فضاهای متری جزئا مرتب نگاشت های انقباضی تعمیم یافته را معرفی نموده و نقاط ثابت دوتایی چنین نگاشت هایی را بررسی می کنیم. همچنین چندین کاربرد از نتایج حاصله را در حل مسائل مقدار مرزی متناوب و معادلات انتگرال ارائه خواهیم کرد، سرانجام نقطه انطباق دوتایی را برای دو نگاشت f و g که در یک شرط انقباضی ضمنی صدق می کند، به دست می آوریم.

منابع مشابه

کاربردهای برخی از قضایای نقطه ثابت در فضاهای شبه متریک

در این پایان نامه، وجود نقطه ثابت خود نگاشت ها را بررسی می کنیم. و شرایطی را روی خودنگاشت های یک فضای شبه متریک(فازی) کامل اعمال می کنیم که تحت آنها، خود نگاشت ها دارای نقطه ثابت باشند. با استفاده از این نتایج، وجود جواب یک معادله بازگشتی مربوط به الگوریتم مرتب سازی سریع، الگوریتم مرتب سازی درجی و روش تقسیم و حل را ثابت می کنیم. همچنین فضای شبه متریک وزن دار را مورد مطالعه قرار می دهیم و نتایج ...

15 صفحه اول

قضایای نقطه ثابت در فضاهای d- متریک

در این پایان نامه ابتدا به معرفی فضاهای d- متریک و ساختار توپولوژی روی آن پرداخته هم چنین ویژگی های توپولوژی روی این فضاها را بررسی می کنیم. پس از آن با آوردن مثال هایی نشان می دهیم که اساس ادعاهای (دهاگه) مرتبط با ساختار توپولوژی این فضاها نادرست است و لذا بسیاری از نتایج مرتبط با این فضاها رد شده و فضای متریک تعمیم یافته اصلاح شده ای به نام فضای g- متریک معرفی می شود و برخی قضایای نقطه ثابت د...

15 صفحه اول

قضایای نقطه ثابت در فضاهای متریک فازی

در این پایان نامه با معرفی نگاشت های فازی انقباضی و نگاشت های بطور یکنواخت پیوسته به بررسی وجود و یکتایی نقاط ثابت در این نوع توابع می پردازیم. در ادامه با معرفی نگاشت های سازگار در فضاهای متریک فازی یک قضیه نقطه ثابت را برای چهار نگاشت سازگار از نوع (i) و (ii)مورد بررسی قرار می دهیم. در نهایت یک شکل فازی از قضیه نقطه ثابت لیف شیتز ارائه می گردد

15 صفحه اول

قضایای نقطه ثابت در فضاهای متریک

قضیه نقطه ثابت باناخ در جهات مختلف و توسط افراد زیادی توسیع داده شد. در این پایان نامه بعد از مفاهیم اولیه در فصل اول و ارائه چند توسیع از قضیه مشهور باناخدر فصل دوم، دو نوع قضیه نقطه ثابت در فصل سوم ارائه می کنیم که یکی شامل تابع محک و دیگری شامل شرط انقباض مییر-کیلر است و در ادامه دو قضیه کلی را برای اثبات هم ارزی بین این دو نوع قضیه ثابت می کنیم و در فصل چهارم قضیه نقطه ثابت جدیدی را ارائه خ...

15 صفحه اول

قضایای نقطه ثابت در فضاهای متریک مخروطی

در این پایان نامه به بررسی وجود نقطه ی ثابت برای رده ای از نگاشت ها که تعمیم هایی از انقباض ها هستند می پردازیم. ویژگی همه ی این نگاشت ها آن است که تکرارهای پیکارد برای آن ها همگرا به نقطه ی ثابت نگاشت می شود. این بررسی ها ابتدا در فضای متریک معمولی و سپس در فضا های متریک با ترتیب جزئی، متریک برداری و نهایتاً فضاهای متریک مخروطی انجام شده است.

قضایای نقطه ثابت و نقطه ثابت دوتایی درفضاهای b - شبه متریک

در ابتدا فضاهای شبه متریک ،b- متریک ومتریک جزئی تعریف می شود .سپس وجود ویکتایی نقاط ثابت در این فضاها بررسی می شود وبه عنوان یک کاربرد ،نتایج جدید ی از نقاط ثابت ونقاط ثابت دوتایی درفضاهای شبه متریک ،b- متریک ،b – شبه متریک ومتریک جزئی استنتا ج می شود .علاوه براین باچند مثال کاربرد این نتایج توضیح داده خواهد شد .

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده علوم

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023